河南红星选矿设备 联系电话:0371-67772626
当前位置:首页 > 选矿知识 > 正文

污泥干燥机的选型介绍

  随着经济的发展,城市污水处理行业得到迅速发展,污泥的处置和开发利用问题日益为人们所关注。污泥的干化处理,使污泥农用、作为燃料使用、焚烧乃至为减少填埋场地等处理方法成为可能。污泥干燥技术的完善与革新,直接推动了污泥处置手段的发展,拓展了污泥处置手段的选择范围,使之在安全性、可靠性、可持续性等方面得到越来越可靠的保证。

污泥干燥机

  随着国内污泥处理市场的启动,各种污泥烘干设备应运而生,但污泥的干化处理需要消耗大量的热源,提高了污泥的处置成本。各种污泥干燥设备特性如何,处理规模与污泥干燥设备选型的关系,如何得到一套技术成熟、投资与操作费用 组合的干燥系统,是本文要探讨的关键点。

  1、带有内破碎装置的回转圆筒干燥机

  该烘干机采用直接干燥技术,将烟道气与污泥直接进行接触混合,使污泥中的水分得以蒸发并最终得到干污泥产品。

  该机的主体部分为:与水平线略呈倾斜的旋转圆筒,烘干方式采用顺流式烘干。物料经供料装置从回转式转筒的上端送入,在转筒内抄板的翻动下(5~8r/min)与同一端进入的流速为1.2~1.3m/s、温度为700℃的热气流接触混合,滚筒中部设旋转的破碎搅拌翼,能使进入烘干机内的物料迅速被打碎,特别是有一定粘性的大块物料,可碎成小块,以便和热风充分接触,提高干燥效率,小块物料进一步碎成粒状,经20~60min的处理,干污泥经出料口输送出来。最终得到含水率低于14%的干污泥产品。

污泥干燥机发货

  1.1 设备特点

  通过破碎搅拌装置和圆筒回转的复合 ,使总传热系数提高至普通回转干燥机的2~3 ,可达300~500kcal/m 3.n.℃。破碎搅拌装置破碎物料,物料和热风的接触面积增大,同时亦防止了热风的短路,使热风的热量得到充分利用。由于城市污水厂的污泥在脱水的过程中投加了絮凝剂,使污泥粘性增大,在烘干过程中容易结块,既影响了烘干的 ,又增加了利用的难度(需上一套泥块破碎设备)。在本干燥设备中,通过搅拌破碎装置和筒内的窑式活动板作用,使泥块结硬之前就被破碎,最终的出料为粉粒状产品,使污泥的后续处理或利用工序更加简便。

  1.2 该设备缺点

  污泥刚进入干燥机时,含湿量很大,一般在80%左右,此时应是蒸发量 ,干燥效率 点。但由于此时无法破碎,污泥与热空气弥散接触度很低,蒸发效率很低。待破碎机发挥作用时,物料水分一般在40%以下,这时物料已运行到回转圆筒的半程以上,导致有效空间不能充分发挥作用。对于出机水分要求较高的场合(如50%),干燥效率就更低,一般都会过干而造成浪费。与污泥进行过热交换的废气,一般在100度左右排入大气,浪费了大量热源,增大了操作成本,还导致了大气的污染。

  1.3 适应规模

  带内破碎设备装置的回转圆筒干燥机,设备一次性投资适中,土建投资较高,能耗较大,适用于单机处理能力在5吨/小时以下,终水分要求较低(小于20%)的污泥干燥项目中。

  2、设有内件的流化床

  该机采用热风直接加热与内件传导加热的复合加热方式,对污泥进行连续干燥,在固定流化床内装有布局各异的换热管束,管束内通入锅炉蒸汽,锅炉蒸汽是加热介质。空气经过设置在流化床外部的蒸汽加热器加热后进入流化床,在床内吹动加入的污泥,使之与内件换热、碰撞、粉碎。达到水分与粒度要求得物料被热风带出干燥机,经旋风与袋式除尘器收集。未达要求的物料在干燥机内循环干燥。

  2.1 设备特点

  内件起到破碎与传导换热的作用,使得原本没法干燥污泥的流化床可以用来干燥污泥,发挥了流化床处理量大的特点,传导加热内件起到了一定的节能作用。干燥强度得到了提高。

  2.2 设备缺点

  污泥颗粒长时间与内件碰撞摩擦,缩短了内件寿命。有热风介入,带走热量,加大了能耗,增加了操作成本。

  2.3 适应规模

  设备一次性是投资适中,土建投资费用较高,能耗偏大。适于单机污泥处理量在8吨/小时,终含湿量低的项目中。

  3、楔型空心桨叶干燥机

  w系列污泥干燥机由互相啮合的二根桨叶轴、带有夹套的w形壳体、机座以及传动部分组成,污泥的整个干燥过程在封闭状态下进行,有机挥发气体及 气体在密闭氛围下送至尾气处理装置,避免环境污染。

  干燥机以蒸汽,热水或导热油作为加热介质,轴端装有热介质导入导出的旋转接头。加热介质分为两路,分别进入干燥机壳体夹套和桨叶轴内腔,将器身和桨叶轴同时加热,以传导加热的方式对污泥进行加热干燥。被干燥的污泥由螺旋送料机定量地连续送入干燥机的加料口,污泥进入器身后,通过桨叶的转动使污泥翻转、搅拌,不断更新加热介面,与器身和桨叶接触,被充分加热,使污泥所含的表面水分蒸发。同时,污泥随桨叶轴的旋转成螺旋轨迹向出料口方向输送,在输送中继续搅拌,使污泥中渗出的水分继续蒸发。 ,干燥均匀的合格产品由出料口排出。

  3.1 设备特点

  a、设备结构紧凑,装置占地面积小。由设备结构可知,干燥所需热量主要是由排列于空心轴上的空心桨叶壁面提供,而夹套壁面的传热量只占少部分。所以单位体积设备的传热面大,可节省设备占地面积,减少基建投资。

  b、热量利用率高。污泥干燥机采用传导加热方式进行加热,所有传热面均被物料覆盖,减少了热量损失;没有热空气带走热量,热量利用率可达 90%以上。

  c、楔形桨叶具有自净能力,可提高桨叶传热作用。旋转桨叶的倾斜面和颗粒或粉末层的联合运动所产生的分散力,使附着于加热斜面上的污泥自动地 ,桨叶保持着高产的传热功能。另外,由于两轴桨叶反向旋转,交替地分段压缩(在两轴桨叶面相距最近时)和膨胀(在两轴桨叶面相距离最远时)搅拌功能,传热均匀,提高了传热 。

  d、由于不需用气体来加热,就没用气体介入,干燥器内气体流速低,被气体挟带出的粉尘少,干燥后系统的气体粉尘回收方便,尾气处理装置等规模都可缩小,节省设备投资。

  e、污泥含水率适应性广,产品干燥均匀性高。干燥器内设溢流堰,可根据污泥性质和干燥条件,调节污泥在干燥器内的停留时间,以适应污泥含水率变化的要求。此外,还可调节加料速度、轴的转速和热载体温度等,在几 与几小时之间任意选定停留时间。因此对污泥含水率变化的适应性非常广泛。

  3.2 设备缺点

设备传热面均有钢板加工焊接而成,用水蒸气做热介质时,设备还为一类压力容器,设备重量较大,设备一次性投资较高。

  3.3 适应规模

  设备一次性投资较高,土建 ,操作成本只有热风直接型干燥机的三分之一。适于各种终湿含量要求的项目中。